Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 155: 58-68, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32439383

RESUMO

Selenium compounds have been identified as potential oxidant scavengers for biological applications due to the nucleophilicity of Se, and the ease of oxidation of the selenium centre. Previous studies have reported apparent second order rate constants for a number of oxidants (e.g. HOCl, ONOOH) with some selenium species, but these data are limited. Here we provide apparent second order rate constants for reaction of selenols (RSeH), selenides (RSeR') and diselenides (RSeSeR') with biologically-relevant oxidants (HOCl, H2O2, other peroxides) as well as overall consumption data for the excited state species singlet oxygen (1O2). Selenols show very high reactivity with HOCl and 1O2, with rate constants > 108 M-1 s-1, whilst selenides and diselenides typically react with rate constants one- (selenides) or two- (diselenides) orders of magnitude slower. Rate constants for reaction of diselenides with H2O2 and other hydroperoxides are much slower, with k for H2O2 being <1 M-1 s-1, and for amino acid and peptide hydroperoxides ~102 M-1 s-1. The rate constants determined for HOCl and 1O2 with these selenium species are greater than, or similar to, rate constants for amino acid side chains on proteins, including the corresponding sulfur-centered species (Cys and Met), suggesting that selenium containing compounds may be effective oxidant scavengers. Some of these reactions may be catalytic in nature due to ready recycling of the oxidized selenium species. These data may aid the development of highly efficacious, and catalytic, oxidant scavengers.


Assuntos
Compostos de Selênio , Selênio , Peróxido de Hidrogênio , Ácido Hipocloroso , Cinética , Oxidantes , Oxirredução
2.
J Org Chem ; 79(7): 3079-87, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24605923

RESUMO

A tetrafluoro-substituted fluorescein derivative covalently linked to a 9,10-diphenyl anthracene moiety has been synthesized, and its photophysical properties have been characterized. This compound, denoted Aarhus Sensor Green (ASG), has distinct advantages for use as a fluorescent probe for singlet molecular oxygen, O2(a(1)Δg). In the least, ASG overcomes several limitations inherent to the use of the related commercially available product called Singlet Oxygen Sensor Green (SOSG). The functional behavior of both ASG and SOSG derives from the fact that these weakly fluorescent compounds rapidly react with singlet oxygen via a π2 + π4 cycloaddition to irreversibly yield a highly fluorescent endoperoxide. The principal advantage of ASG over SOSG is that, at physiological pH values, both ASG and the ASG endoperoxide (ASG-EP) do not themselves photosensitize the production of singlet oxygen. As such, ASG better fits the requirement of being a benign probe. Although ASG readily enters a mammalian cell (i.e., HeLa) and responds to the presence of intracellular singlet oxygen, its behavior in this arguably complicated environment requires further investigation.


Assuntos
Antracenos/química , Antracenos/síntese química , Corantes Fluorescentes/química , Oxigênio Singlete/química , Animais , Reação de Cicloadição , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Luz , Fármacos Fotossensibilizantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...